
Characterizing and Detecting Malicious Accounts in
Privacy-Centric Mobile Social Networks: A Case Study

Zenghua Xia
Tsinghua University

xiazh16@mails.tsinghua.edu.cn

Chang Liu
Citadel Securities

liuchang2005acm@gmail.com

Neil Zhenqiang Gong
Duke University

neilz.gong@gmail.com

Qi Li
Tsinghua University
qli01@tsinghua.edu.cn

Yong Cui
Tsinghua University

cuiyong@tsinghua.edu.cn

Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

ABSTRACT
Malicious accounts are one of the biggest threats to the security and
privacy of online social networks (OSNs). In this work, we study a
new type of OSN, called privacy-centric mobile social network (PC-
MSN), such as KakaoTalk and LINE, which has attracted billions of
users recently. The design of PC-MSN is inspired to protect their
users’ privacy from strangers: (1) a stranger is not easy to send a
friend request to a user who does not want to make friends with
strangers; and (2) strangers cannot view a user’s post. Such a design
mitigates the security issue of malicious accounts. At the same time,
it also brings the battleground between attackers and defenders
to an earlier stage, i.e., making friendship, than the one studied in
previous works. Also, previous defense proposals mostly rely on
certain assumptions on the attacker, which may not be robust in the
new PC-MSNs. As a result, previous malicious accounts detection
approaches are less effective on a PC-MSN.

To mitigate this issue, we study the patterns in friend requests
to distinguish malicious accounts, and perform a systematic study
over 1 million labeled data from WLink, a real PC-MSN with bil-
lions of users, to confirm our hypothesis. Based on the results, we
propose dozens of new features and leverage machine learning to
detect malicious accounts. We evaluate our method and compare
it with existing methods, and the results show that our method
achieves a precision of 99.5% and a recall of 98.4%, which signifi-
cantly outperform previous state-of-the-art methods. Importantly,
we qualitatively analyze the robustness of the designed features, and
our evaluation shows that using only robust features can achieve
the same level of performance as using all features. WLink has
deployed our detection method. Our method can detect 0.59 million
malicious accounts daily, which is 6× higher than the previous
deployment on WLink, with a precision of over 90%.

CCS CONCEPTS
• Security and privacy → Social network security and pri-
vacy;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330702

KEYWORDS
Malicious accounts detection, online social networks, friend request,
neural networks

ACM Reference Format:
Zenghua Xia, Chang Liu, Neil Zhenqiang Gong, Qi Li, Yong Cui, and Dawn
Song. 2019. Characterizing and Detecting Malicious Accounts in Privacy-
Centric Mobile Social Networks: A Case Study. In The 25th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’19), August
4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3292500.3330702

1 INTRODUCTION
Online social networks (OSNs) are known to be vulnerable to ma-
licious accounts. An attacker can automatically maintain a large
number of malicious accounts and use them to perform various
malicious activities including, but not limited to, disrupting the pres-
idential election and stock markets via spreading fake news [32, 33],
distributing malware and phishing URLs [45], as well as stealing
users’ private data [6]. Therefore, detecting malicious accounts in
OSNs is an urgent and basic security research problem.

Recently, a new class of social networks, namely privacy-centric
mobile social networks (PC-MSNs), has attracted billions of users. PC-
MSNs, such as LINE [3] and KakaoTalk [2], are initially inspired to
prevent many social engineering attacks. For example, the attackers
may first probe the victim’s activities posted on the social network,
and then make a call to the victim to pretend to be her friends while
increasing his trustworthiness by making stories leveraging the
social activities of the victim. To mitigate such kinds of attacks,
PC-MSNs are designed to enforce their user privacy: (1) strangers
are not easy to make a friend with a benign user unless the later
intentionally approve it; and (2) a user’s posts on the network are
not visible to others who are not a friend of the user. PC-MSNs’ fast
adoption is partially attributed to such a privacy-centric design.

Clearly, detecting malicious accounts on PC-MSNs is still a cru-
cial problem. In this work, we study the malicious accounts problem
on WLink1 , a large PC-MSN with over a billion monthly active
users. One straightforward idea is to apply the methods proposed
for malicious OSN accounts detection, which has been studied over
a decade [11, 14, 15, 17, 18, 22, 23, 27, 41–44, 46, 55]. Unfortunately,
we observe that many such approaches are no longer effective for
PC-MSNs (see Section 5.2).

1Due to the confidentiality agreement, we do not disclose the real name, but use the
pseudonymWLink instead.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2012

https://doi.org/10.1145/3292500.3330702
https://doi.org/10.1145/3292500.3330702
https://doi.org/10.1145/3292500.3330702

We study why existing approaches are not effective. One of
the main reason is due to their privacy-centric design. In fact, the
privacy policy ofWLink incurs an additional barrier between the
attacker and the victims. Different from existing OSNs, the attacker
needs to become a friend of the victim first before performing
malicious activities. At the same time, WLink provides limited
ways for one user to send friend requests to another. For example,
one way to send a friend request is through scanning the QR code,
which mostly requires the two users to be physically close to each
other, and thus it is less likely for one user to add a stranger as
her friend. Therefore, WLink essentially moves the battleground
between attackers and defenders to the field of making friendship,
a.k.a., sending friend requests, which is amuch earlier stage than the
attack scenarios studied in the literature [12, 43], which motivates
the design of previous yet less effective detection proposals.

On the other hand, some unsupervised detection proposals [12,
44] rely on assumptions on the attacker in their design. Although
these works argue that the used assumptions are robust, i.e., the
attacker needs to incur a high cost to violate them, we find that the
malicious accounts on WLink do not meet these assumptions, and
thus they can evade such detection algorithms. Therefore, another
important question that has not been carefully understood is how to
design robust features to defend against evasion attackers, especially
in our scenario to build the detection algorithm using supervised
learning.

In this work, we are the first to (1) study malicious accounts on
a large PC-MSN, i.e.,WLink, with respect to the main battleground,
i.e., friend requests; and (2) discuss how to design robust features
against evasion attackers for the supervised malicious accounts
detection problem. To examine our hypothesis, we conduct a mea-
surement study over a labeled dataset of around 1 million benign
and malicious accounts collected from WLink. We observe that
many attributes related to the friend requests can effectively distin-
guish malicious accounts from benign ones. For example, malicious
accounts tend to send significantly more friend requests; malicious
accounts are significantly more likely to pretend to be a female
and send friend requests to male users, while benign accounts are
significantly more likely to send friend requests to female users;
and malicious accounts tend to use a diverse set of request messages
while benign accounts’ are similar. Based on these observations,
we propose a rich set of features and quantitatively analyze their
robustness.

Note that existing works [10, 25] have studied friend requests
and its application to malicious account detection. However, these
works only considered each friend request as a directed graph edge
on the social network graph and did not examine richer information
contained in a friend request. The novelty of this work, in contrast,
is to have a better understanding of the information contained in
friend requests without considering the graphical structure, and its
application to the malicious accounts prevention problem. More
importantly, this work is the first to analyze which features are
more robust against evasion attackers.

Based on the proposed features, we employ a deep neural net-
work (DNN) to convert the textual messages in a friend request into
features, and use a Random Forest [8] to build a malicious accounts
detection prototype, called Realguard, and compare it against sev-
eral previous state-of-the-art proposes, such as Stringhini et al.

[43], EvilCohort [44] and SynchroTrap [12]. We observe that our
approach can achieve an F1-score of over 98.9%, while existing
approaches’ scores range from 50.7% to 88.8%. More importantly,
our evaluation reveals that using only robust features can achieve
comparable performance to using all features; this result also sheds
light on employing robust features against evasion attackers to
detect malicious accounts on an OSN. We also deploy Realguard
inWLink’s production pipeline, and Realguard is able to analyze
around 1 billion friend requests sent from millions of users daily
and detects 0.59 million malicious accounts per day, which is 6×
more than the previous deployment in WLink. Through manual
inspection, it is confirmed that Realguard can achieve over 90%
precision.

We summarize our contributions as follows:
• This is the first work studying malicious accounts on a large PC-
MSN, i.e., WLink;

• We perform a large-scale measurement study to characterize mali-
cious accounts in WLink;

• Based on the measurement study, we propose dozens of new fea-
tures and leverage supervised machine learning to detect malicious
accounts;

• This is the first work to analyze the robustness of each proposed
feature with respect to a potential evasion attacker who tries to
evade the malicious account detector.

• We implement a prototype, called Realguard, of our method and
compare it with the state-of-the-art methods using the labeled
dataset fromWLink. Our results show that our method can achieve
a precision of 99.5% and a recall of 98.4%, which significantly
outperform the baseline methods;

• We deploy Realguard onWLink’s production line to process bil-
lions of friend requests sent from millions of accounts daily. Our
system can detect 6× more malicious accounts per day than the
previous deployment with a precision over 90%.

2 PRIVACY-CENTRIC MOBILE SOCIAL
NETWORKS

In this section, we will describe the key design and functionality
of PC-MSN, usingWLink as an example. Other networks such as
LINE and KakaoTalk share all or partial similar properties. WLink
is designed to have a strict policy to protect users’ privacy from
strangers, whom the user may not know in person. Such privacy
policies include but not limited to that (1) a stranger cannot easily
add a user as a friend; and (2) the social activities of a user, such as
posts, cannot be viewed by strangers. Such a designmakes attackers,
who are mostly strangers to the victim, harder to spread malicious
content. In the following, we will first detail the two unique designs
ofWLink; and then we will briefly discuss the characteristics of the
malicious accounts in such a network.
Limited channel usage for sending friend requests: WLink
provides limited channel usage for a user to find other users and
send them friend requests. Different from other OSNs, such as Ren-
ren [4] or Facebook, WLink does not allow searching for friends
with their names, which makes it more difficult to make friends
sinceWLink ID ismuchmore private and hard to know for strangers;
neither doesWLink suggest friends to a user to add. OnWLink, a
user can send a friend request to another user using its ID, phone

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2013

number, and name card, which is used by a user to share information
between two of her friends. A WLink user can also send a friend
request to another by scanning the latter’s QR code. In addition,
when a user is invited to join a group, the user can send friend
requests to the group members. These channels mostly leverage
mobile devices’ features to require the receivers of friend requests
to have personal contact with the senders in reality. Thus, these
channels are harder for strangers to leverage.

A user can also send friend requests to other users based on
certain services in WLink. For instance, a user can use location-
based service (LBS) to find other users that are close and also use
the LBS; then the user can send them friend requests. A user can
pick up a message in the RandomMsg service and sends a friend
request to the sender of the message. Finally, when two users use
the “match" service at the same time, a user can obtain the other
user’s basic account information and send a friend request. These
channels enable strangers to send friend requests to the receiver;
however, the receiver requires to opt-in to receive friend requests
through these channels. This means that if a user chooses to opt-
out, a stranger’s friend requests through these channels will be
automatically rejected.

Therefore, such a design can mitigate the friend request issue
from strangers on principle. In practice, however, from Section 3,
we will observe that a high volume of malicious accounts still send
friend requests through QRCode and RandomMsg.

Restricted content sharing:WLink has a more restricted content
sharing policy than Twitter and Facebook. For instance, on Twitter,
a user can use mentions to target any specific user, e.g., a user can
post a tweet "@XYZ look at this cool website!", which will be shown
to the user XYZ even if XYZ is not a follower or followee of the user.
Moreover, on Twitter, a user can post tweets with a certain hashtag,
which indicates a certain topic. When a large number of users (e.g.,
malicious users) post tweets with the same hashtag, the topic may
become a trending topic, and the tweets with this hashtag could be
propagated to a large number of benign users. On Facebook, when
a user sets its timeline to be public, its posts and comments to the
posts are visible to all other users. Moreover, on Facebook, a user
can post comments on other users’ timeline even if they are not on
the user’s friend list. Therefore, malicious accounts can propagate
malicious content to benign users without establishing connections
with them on Twitter and Facebook [28, 31].

InWLink, two users can interact with each other via posts, com-
ments, private messages, and group messages. Specifically, a normal
user’s posts are only visible to and can be commented by the user’s
friends. Suppose user A adds a comment to her friend B’s post. The
comment is only visible to the common friends of user A and user
B. The comments of user A cannot be re-shared by user B unless
user B posts a new comment with the same content. Two users
can exchange private messages only if they are friends. A user can
be invited by her friend to join a group and exchange messages
in the group. All these content propagation requires users to be
connected, e.g., a user must be connected to at least one group
member in group messages. These mechanisms make information
propagate mostly among friends.

Another way to propagate content is via sending friend requests
which allow a request message (up to 120 bytes) attached. The re-
ceiver of a friend request will be shown with the request message.
However,WLink mostly requires its users to send friends to only
whom they may know each other offline.

We note that WLink provides a service called RandomMsg, in
which a user can send out messages that could be received by some
random users who are also using the service. However,WLink only
allows a very limited number of random messages, and they can
only be received by users who are using the service as well.

Therefore, to propagate malicious content at scale in WLink,
malicious users often need to actively send a large number of friend
requests to benign users with a goal to either accumulate many
“friends” or propagate malicious content via the request messages.

Due to the unique designs on restricted content sharing and lim-
ited channel usage for sending friend requests, malicious accounts
may have abnormal friend request patterns. Therefore, we focus
on leveraging friend requests to characterize and detect malicious
accounts in WLink.
Malicious account activities in WLink. In this work, we are
mainly focusing on the malicious accounts which are used to con-
duct illegal activities, such as spreading pornography, spam, or
scam, prostitution, producing fake clicks, etc. Due to the above
design, malicious accounts onWLink need to become a friend of
the victims to widely spread malicious content through posting. On
the other hand, if a malicious account wants to make “cold call" to
spread malicious content, the only effective tool is through friend
request messages. Such a property brings the fight between attack-
ers and malicious accounts detectors earlier to the battleground
of friend requests. This is quite different than attackers studied in
previous works, which focus mainly on malicious activities, such
as posting and sharing after a friendship has been made. Note that
some existing works [10, 25] also studies friend requests on so-
cial networks such as Renren. However, Renren provides a search
functionality to allow malicious accounts to send any other user a
friend request. Therefore, making friends is not a main barrier for
the attackers as in these networks.

3 CHARACTERIZING MALICIOUS
ACCOUNTS

We perform a systematic measurement study to characterize the
friend request patterns of malicious accounts and compare them
with those of benign accounts in WLink. Throughout the analysis,
we focus not only on what features are indicative for predicting
malicious accounts but also whether these features are robust. That
is, we say a feature is robust, if (1) the attacker cannot change the
value of the feature; (2) the attacker needs to degrade the utility
significantly to do so; or (3) the attacker needs to incur a significant
cost to manipulate feature values.

3.1 Dataset
We obtained a real-world dataset with 785,710 labeled benign ac-
counts and 314,493 labeled malicious accounts from WLink. The
security team of WLink took a conservative labeling process to ob-
tain these labels. Therefore, the labels can be considered relatively
accurate. Specifically, an account may not have a label when the

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2014

 0
 0.2
 0.4
 0.6
 0.8

 1

 50 100 150 200 250

C
D

F

Number of Friend Requests

Benign
Malicious

(a) Numbers of friend requests
sent

 0
 0.2
 0.4
 0.6
 0.8

 1

 5 10 15 20 25 30 35 40

C
D

F

Number of IP Addresses

Benign
Malicious

(b) Unique IP addresses used

Figure 1: CDF of distributions of benign and malicious
friend requests.

security team is unsure, and such accounts are not included in our
dataset. For each user, the dataset contains the user’s following data:
(1) profile information; (2) aggregated social activities, e.g., total
number of posts and comments; and (3) friend requests sent within
one day. In total, there are 2.54 million and 13.38 million friend
requests sent from benign and malicious accounts, respectively. A
friend request contains various fields including Sender, Receiver,
Timestamp, IP, Channel and Message, which are summarized in
Table 3 in reproducibility materials.
Ethics.WLink requires its users to agree to the Terms of Use, which
authorizes WLink to collect the information used in this study for
security auditing and we work on anonymized and aggregate data
and don’t attempt to deanonymize those users.

3.2 Measuring Friend Requests
We first analyze different attributes to understand how attackers
use their malicious accounts to send friend requests, and further,
to distinguish malicious from benign users. We refer to all friend
requests sent from benign accounts as benign friend requests, and all
friend requests from malicious accounts asmalicious friend requests.
In particular, we study (1) friend request volumes; (2) gender of the
sender and receiver; (3) IP addresses used to send the friend requests;
(4) channels through which the senders know the receivers; and (5)
temporal patterns of the friend requests.
Number of Friend Requests Sent. In Figure 1a, we plot the Cu-
mulative Distribution Function (CDF) of the distributions of friend
request amounts sent from benign users versus malicious ones in
our dataset. We observe a significant difference between the two:
over 90% of benign accounts sent at most 5 friend requests within
one day, while this percentage for malicious accounts is less than
10%. The reason is that WLink has a restricted content sharing pol-
icy. Malicious accounts need to aggressively send friend requests to
other users to either accumulate more friends or spread malicious
content via request messages. Interestingly, such a phenomenon
has also been observed in traditional OSNs, such as Twitter [21] and
RenRen [54]. However, previous studies [21, 54] did not provide a
more fine-grained characterization of friend requests.

Since sending friend request messages is the main tool for a
malicious account to make “cold-calls", lowering the volume of
friend requests will also degrade the attacker’s utility. Therefore,
this attribute can be considered robust.
IP addresses. Intuitively, benign users tend to stay in a relatively
small number of places, and thus send their friend requests from
a small set of IP addresses. In contrast, malicious users may tend
to use a diverse set of IP addresses (e.g., via VPN or Tor) to evade

S
R Female Male S

R Female Male

Female 34.3% 13.6% Female 30.2% 63.2%
Male 37.2% 14.9% Male 2.3% 4.3%
(a) benign accounts (b) malicious accounts

Table 1: Distribution of friend requests based on the Sender’s
and Receiver’s genders.

IP-based blacklisting and detection. Figure 1b shows the CDF of the
distributions of the number of unique IP addresses from which be-
nign and malicious friend requests are sent. The results confirm the
above intuition, i.e., malicious accounts tend to use a more diverse
set of IP addresses. For instance, around 33% of malicious friend
requests used more than 3 IP addresses, while only 1% of benign
accounts used more than 3 IP addresses. We consider attributes
related to IP address as robust since an attacker needs to maintain
many IP addresses to evade IP-based blacklisting and detection,
while benign users do not have such a need.
Gender. InWLink, each user can set the gender in his/her account
profile. Thus, each friend request can be classified into one of the
four classes based on their sender’s and receiver’s genders (F→F,
F→M, M→F, M→M). We calculate the distributions of these four
classes for both benign and malicious friend requests, and Table 1
shows the results.

We observe that among the benign friend requests, there are
about the same percentage of requests sent from male users (52.1%)
and female users (47.9%). Moreover, no matter whether the sender
is male or female, a benign user is significantly more likely to send
friend requests to female users. Specifically, benign friend requests
sent to females are 2.5× more than those sent to males.

However, we observe significantly different patterns for mali-
cious accounts. In particular, over 93% of malicious friend requests
are sent from females. Moreover, malicious friend requests are
around twice more likely to be sent to a male user (e.g., 63.2% from
a female) than a female user (e.g., 30.2% from a female).

We speculate the reason may be that many of these malicious
accounts are used to spread pornographic information. Specifically,
WLink allows a user to arbitrarily set its gender and profile pic-
ture. To attract more victims (mostly males), setting their gender
to be female while sending friend requests to males can increase
the chance of the friend requests being accepted. In addition, we
manually investigated a small sample of malicious accounts. We
observed that a majority of them use beautiful women’s pictures
as their profile photos, which further supports our speculation.

Since forging the gender is one of the main tools for a malicious
account to attract a victim through friend requests, we think arbi-
trarily changing the value of this feature will degrade the attacker’s
utility. Therefore, we consider the gender attribute robust.
Channels.We observe that malicious users leverage amore diverse
set of channels to send friend requests. For instance, above 99%
of benign accounts sent their friend requests through at most 3
channels, while 20% of malicious accounts use more than 3 channels.
The reason is that malicious users aim to increase the likelihood of
accumulating friends via a diverse set of channels.

Figure 2 shows the distributions of the benign and malicious
friend requests with respect to the 8 channels shown in Table 4.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2015

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Group ID
Number

NameCard

QRCode
LBS

RandomMsg
MatchF

ra
ct

io
n

of
 F

ri
en

d
R

eq
ue

st
s

Channel Name

Benign

Malicious

Figure 2: The distributions of friend
requests with respect to channels.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20

F
ra

ct
io

n
of

 F
ri

en
d

R
eq

ue
st

s

Hour

Benign
Malicious

Figure 3: Hourly distributions of
friend requests.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0
.6

-0
.5

-0
.4

-0
.5

-0
.2

-0
.1 0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

C
D

F

Similarity

Benign

Malicious

Figure 4: Similarity of request mes-
sages.

We observe that the top-3 most popular channels for benign friend
requests are LBS, Group, and phone number, which in total account
for around 60% of benign friend requests. Benign users often find
friends through their phone numbers, e.g., WLink will recommend
a user’s phone contacts who also use WLink to the user. Users
form groups because they have common interests or certain social
connections (e.g., classmates) in the physical world, and thus benign
users are more likely to send friend requests to group members.

However, we observe a significantly different pattern for mali-
cious accounts. Specifically, the top-3 most popular channels for
malicious friend requests are QRCode, RandomMsg, and NameCard,
which in total account for around 43% of malicious friend requests.
Our observations indicate that many malicious users pick up mes-
sages from the RandomMsg service and send friend requests to the
senders of the messages. Interestingly, around 20% of malicious
friend requests are sent via QRCode. Note thatWLink does not ver-
ify this channel information on the server side, thus the attackers
can manipulate the channels of their friend requests, which may
be the reason why so many malicious friend requests are sent via
QRCode. Therefore, the related attributes are not robust.
Time. We then study the time when the friend requests are sent.
We present the hourly distributions with respect to benign and
malicious requests in Figure 3. One interesting phenomenon is that
the percentage of malicious requests during 1:00 am and 8:00 am is
much higher than benign ones. We refer to this period as sleeping
hours. We attribute this phenomenon to that some attackers may
automate the process to send friend requests, and thus these portion
of the attackers are not affected by the sleeping hour.

However, since such automated malicious friend requests are
easier to detect, we find that a large number of attackers may
not simply use automated attacks. In fact, we observe that over
half of the malicious accounts did not send any friend requests
during sleeping hours. We speculate the reason could be that those
malicious accounts are mimicking benign users’ temporal behavior
to avoid detection. This also contributes to the phenomenon that
more malicious friend requests are sent during daytime. We do
not consider timing-related attributes robust, since an attacker can
easily manipulate their active time to pretend to be benign.

3.3 Request Messages
The request message along with a friend request is the main in-
formation for the receiver to decide whether or not accepting the
request. Therefore, different from traditional OSN, a PC-MSN ac-
count needs to carefully design the request messages along with
their friend requests. Note that, normally, this message is only used

to indicate the identity of the user sending the request. In this sec-
tion, we present both a qualitative study and a quantitative study to
understand the difference of the request messages between benign
and malicious accounts.
Qualitative study. InWLink, a default template is provided for the
request message field: “I am [Name]", where [Name] indicates the
nickname of the sender. We note that benign users may replace the
nicknames with their real names. We observe that a majority of the
benign friend requests simply use such a default template generated
message, or add a little more information about the sender’s identity.

While such a message can be easily verified by the receiver
to approve the friend request if the receiver knows the sender,
an attacker is harder to get approved since he does not have a
real-world connection with most receivers. Thus, we observe that
malicious accounts tend to send a variety of vague request messages.
Therefore, such request messages can be used as robust attributes
in the sense that the attacker needs to pay a higher cost with a
lower utility to construct valid request messages.
Quantitative study. Next, we study the similarity of the request
messages sent by the same account. There have been many ap-
proaches tomeasure the similarity between two textualmessages [13,
36, 43]. In this work, we employ the word2vec approach [40] to
convert a textual message into a numerical vector, called embedding.
Each word can be represented as a vector. A sentence can also be
represented as a vector by simply concatenating the vector repre-
sentations of words. If we set the maximum number of words, the
vector representation of each sentence is ensured to be of the same
dimension. Then, the similarity of two textual messages can be mea-
sured by the cosine distance between the two embeddings. For each
account, we can compute the average of the pair-wise similarities of
the request messages sent by the account. We plot the distributions
of the similarities for benign and malicious accounts in Figure 4. We
observe a significant difference between the two distributions. In
particular, over 75% of the benign accounts have a similarity higher
than 0.9, while this percentage of malicious ones is less than 25%.
This shows that benign accounts tend to use a uniform format as
their request messages, while malicious accounts may choose their
request messages from a variety of templates. Note that in previous
studies, the opposite phenomenon was shown overall posts pub-
lished by the same account. This shows that request messages are
used in a different way than posts.
Robustness. We consider the message contained in a friend re-
quest robust, since this is the only tool for a malicious account to
make “cold-calls" to spread malicious content. However, we do not

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2016

Account-
related inputs

Friend
requests

Feature Extractor

DNN-based textual
feature extractor Fe

at
ur

es

R
an

do
m

 F
or

es
t

M
al

ic
io

us
?

Figure 5: Malicious accounts detection workflow

Sente
nce

Words Matrix
5

Conv1d,64
3

Maxpooling1d
4

Conv1d,64

3
Maxpooling1d

Flatten
Fully-

connected,128
Softmax,

2
Output

Tokenize Pre-trained Word Vectors

Figure 6: CNN architecture for textual feature generation.

consider the similarities among friend request messages from the
same sender as a robust feature. Although we observe a pattern in
Figure 4, an attacker can easily eliminate this pattern by making
all messages sent from the same account similar to each other.

4 MACHINE LEARNING-BASED MALICIOUS
ACCOUNTS DETECTION

In this section, we present our machine learning-based algorithm
for malicious accounts detection. Our solution consists of two com-
ponents: a feature extractor and a classifier. In particular, we first
design a set of effective features motivated by our measurement
studies in the last section, and then design a feature extractor to
generate a set of features from the raw attribute values. In the end,
we employ the random forest algorithm [8] to train a classifier.
The malicious accounts detection algorithm. The overall algo-
rithm is presented in Figure 5. Both account-related inputs and
friend requests are processed by the feature extractor to construct a
feature vector. In particular, the feature extractor has a deep neural
network (DNN) module to convert the textual input, i.e., request
messages, into a numeric feature. Then a random forest is used
to classify each feature vector into a label indicating whether the
corresponding account is benign or malicious.
Features.We designed the features motivated by our measurement
study. The full details can be found in the appendix for reproducibil-
ity. We highlight some characteristics of our features which are
mostly different from the ones used in previous studies. Our features
can be classified into non-textual ones and textual ones. The former
includes basic statistical information about both account-related
information (e.g., number of bound bank cards) and friend requests
(e.g., number of unique channels used to send friend requests). The
latter are generated from the request messages, which are rarely
used in previous studies.
DNN-based feature extractor. Now we detail the DNN-based
feature extractor. Given a request message m, we want to learn
a function f , so that f (m) ∈ [0, 1] indicates the probability ofm
being a good request message.

We model f as a deep neural network. Givenm is a sequence
of characters with a variable length, we can model f as either
a recurrent neural network (RNN) [38], or a convolutional neural
network (CNN) [35]. We observe that both methods produce similar
accuracy, but CNN delivers better runtime performance. Thus we

choose to use a CNN to model f . The concrete neural network
architecture is provided in Figure 6. In particular, in the second step,
we use the same word2vec model to convert a message into a matrix
as described in Section 3.3. In the end, the softmax output is a 2-
dimensional vector, where its first dimension’s value is outputted as
f (m). During prediction, once the messagem is mapped into f (m),
SumP is computed as the summation of f (m) for all messages.The
other five aggregated metrics are computed similarly.
Feature robustness. As we mentioned above, we consider a fea-
ture to be robust, if (1) the attacker cannot manipulate the value
of the feature; (2) the attacker needs to incur significant cost to do
so; or (3) the attacker’s utility will be degraded in doing so. Most of
the robust friend requests-related features have been discussed in
Section 3.

The only robust account-related features are gender and the
number of bound bank cards. Since banks require verifying the real
identity of their customers to open an account and to get a card, it
will incur a significant cost for a malicious account to bind many
bank cards, and will also increase the chance to unveil the real
identity of the attacker. Therefore, we think this feature is robust.

5 EVALUATION
In this section, we evaluate our approach. We will first explain the
experimental setup and then present the results. In the end, we
show our real-world evaluation by deploying our prototype in the
WLink pipeline.

5.1 Experimental Setup
We use two datasets. The first one is the same dataset used in our
measurement study: 785,710 benign accounts and 314,493 malicious
accounts that have been detected and verified by WLink’s secu-
rity department. We use it for most experiments. We denote the
difference between the date an account is registered and the date
its friend requests are recorded in our dataset as account age. Our
dataset consists of accounts of various account ages varying from
days to thousands of days. In particular, we split the data into train-
ing, validation and testing set, accounting for 50%, 10%, and 40%
respectively. The second dataset consists of more than one billion
records and about 20 million unlabeled accounts with a time span
of one day, which is collected three months after the first dataset.
We use this dataset to evaluate the effectiveness of our model when
deployed in a real-world production line.

The implementation details can be found in the appendix, which
also explains the three state-of-the-art solutions, SynchroTrap [12],
Evilcohort [44], and Stringhini et al. [43], used for comparison.

5.2 Results
5.2.1 Compare with previous approaches. We first evaluate previ-
ous approaches as well as Realguard on the real dataset collected
from WLink. Figure 7 presents the results. We can observe that
previous approaches are not well-performing onWLink’s data. In
particular, we observe that none of the previous approaches can
achieve an F1 score higher than 90%. Especially, the Evilcohort
approach’s recall is as low as 35%, which shows that it cannot ef-
fectively detect malicious accounts at all. One interesting finding is
that the Stringhini approach indeed performs better than the two

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2017

 0

 0.2

 0.4

 0.6

 0.8

 1

Recall Precision F1 Score

SynchroTrap/IP
SynchroTrap/Uid
Evilcohort
Stringhini et al
Ours

Figure 7: Comparison with baselines

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Recall Precision F1 Score

Unique features
General features
All features

Figure 8: General and/or WLink unique
features.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Recall Precision F1 Score

Textual features
Non-textual featuers
All features

Figure 9: Textual and/or non-textual
features.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Recall Precision F1 Score

Robust features
All features

Figure 10: Robust and/or non-robust features.

state-of-the-art approaches based on community detection. This
confirms our hypothesis that the adversaries on WLink are not
sophisticated enough to bypass simpler detection approaches, and
also they tend to not form a community. However, all these ap-
proaches’ performance is significantly lower than Realguard. Note
that we have also trained our model on an older dataset and tested
it on a newer dataset, and the result is similar. The aucs of each
approach are also computed and the results are similar. They are
not included due to the space limitation.

In particular, we can observe that our approach significantly
improves over previous approaches to achieve a precision of 99.5%,
a recall of 98.4%, and an F1 score of 98.9%, while prior approaches
cannot achieve an F1 score higher than 88.8%. We attribute this to
the synergy of two effects: (1) WLink employs a privacy-centric
design to move the battleground between the attacker and the de-
tector to friend requests; (2) our Realguard approach is specifically
designed to detect malicious accounts based on friend requests.
In the following, we will present more ablation study results to
provide further insights into different classes of features.

5.2.2 Ablation study. We now conduct various experiments to un-
derstand the effect of different categories of features. Figure 8 shows
the comparison of generic features versusWLink unique features.
We observe that unique features can achieve a high recall (i.e., above
97%); however, we also observe that using only WLink unique fea-
tures is not as effective as using only general features. We attribute
it to the fact that WLink unique features are a small subset of all
features. In addition, we observe that using only general features
cannot achieve the highest recall; this shows that WLink unique
features are indeed helpful to detect malicious WLink accounts.

In terms of precision, in contrast, we observe that the model can
achieve a high precision using any set of the features; and using
only WLink unique features’ precision is higher than using only
general features.

Understanding textual features. In Figure 9, we present the com-
parison results of (1) using only textual features; (2) using only
non-textual features; and (3) using all features. We observe that
using textual features only can achieve a recall over 96% and preci-
sion over 98%, showing that the request messages capture essential
information to detect malicious accounts effectively and accurately.

Also, we observe that using both textual and non-textual features
improves over using non-textual features only in terms of both
precision and recall with a small margin. Therefore, we conclude
that textual features can help to improve the model’s performance,
but the improvement is limited.
Using only robust features achieves comparable performance
to using all features. We evaluate whether using only robust fea-
tures can yield reasonably good performance. The evaluation results
are presented in Figure 10. We observe that using only robust fea-
tures will decrease the performance, but the margin is as small as 1%.
The most significant drop in performance is on recall, which drops
from 98% to 97%. However, both of these meet the standard for real
deployment. Therefore, we conclude that using robust features do
not hurt the performance by much.

On the other hand, by its definition, using only robust features
will make adversaries harder to evade the detector. Therefore, when
evasion attacks are in consideration, Realguard provides a robust
and effective solution against such attackers.

5.2.3 Understanding the importance of each feature. We try to un-
derstand the importance of each feature from the finally trained
random forest. They are plotted in Figure 11. We observe that
among the top-10 most important features, 6 of them are derived
from friend requests, while only 4 are account-related features;
among the top-6 friend request-related features, the most impor-
tant two features are textual features. These confirm our hypothesis
that friend requests, especially request messages, capture more in-
formation to distinguish malicious accounts from benign ones. We
also highlight the robust features in the red color. We can observe
that robust features play important roles in the decision trees. This
explains why using only robust features can also achieve high
performance.

5.3 Real World Deployment
We deploy our Realguard prototype inWLink’s production pipeline
to handle their daily dataset. This unlabeled dataset consists of more
than one billion friend requests sent from 20 million accounts with
a time span of one day. As explained in Section 5.1, we can tune
the threshold on the Random Forest output for better performance.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2018

 0
 0.05

 0.1
 0.15

 0.2

Si
m

RM
M

in
P

NFR
TM

NFR
TF NF

NSO
A

NFR
FF

LRM
NFR

M
atc

h
LC

LSM
M

ax
P

NFR
K NG

NFR
FM

Su
m

P
St

dP

Ran
do

m
M

sg
NFR

S
M

ed
ian

P
RNam

e
Gen

de
r

M
ea

nF
M

ea
nP

LGM
Su

m
F LP

LBS
M

ax
F

NCha
nn

el
St

dF
NBBC

NIP
M

ed
ian

F
LCFF
M

in
F

FL
Pl

ac
e

PB
lo

ck
ed

FF
RS

Def
au

ltI
d

FF
RK

NCity

F
ea

tu
re

 I
m

po
rt

an
ce

Feature Name

Figure 11: Feature importance. Robust features are highlighted in red. Feature explanations can be found in the appendix.

In this experiment, we set it to be 0.9 to prefer better precision (i.e.,
reducing the false positive rate).

Realguard can detect 0.59M malicious accounts every day. In
comparison, the previous deployment of the automatic malicious
account detection system can only detect 0.1M ones; thus Realguard
can detect 6× more malicious accounts than the previous deploy-
ment. We randomly sample some accounts predicted as malicious
and send them to WLink’s security department for manual inspec-
tion. It is reported that 90% of the sampled malicious accounts are
indeed malicious. This precision meets the deployment standard of
WLink, and is also comparable to the previous deployment.

We analyze those false positives and find out that a large propor-
tion of them are those sending too many friend requests through
location-based services and containing advertisement in request
messages, which look indeedmalicious without further information.
We conclude that our approach is effective at detecting malicious
accounts in the real mobile social network WLink.

6 RELATEDWORK
Most malicious accounts detection methods can be roughly divided
into two categories, i.e., feature-based methods and social-structure-
based methods. Our method is a feature-based one.

6.1 Feature-based Methods
These methods [5, 12, 15–17, 19, 23, 27, 42, 43, 46, 48, 54] represent
accounts using various features extracted from their profiles, social
graphs, behaviors, content, and/or interactions. Some example fea-
tures include the number of friends/followers, the ratio between
the number of followees and the number of followers, clustering
coefficients, number of URLs in tweets, the similarity between the
messages/tweets sent by an account, hashtags in tweets, and/or
clickstream patterns.

Then, they leverage machine learning techniques to process
these features to identify malicious accounts. Specifically, some
methods [5, 17, 23, 27, 42, 43, 48, 54] use supervised machine learn-
ing techniques to learn classifiers from a training dataset consisting
of both labeled benign accounts and labeled malicious accounts,
and then the classifiers are used to classify the remaining accounts
to be benign or malicious. Some other methods [12, 23] leverage
clustering techniques to group accounts based on their feature
similarities; and accounts that form clusters are more likely to be
predicted as malicious. For instance, SynchroTrap [12] identified
malicious accounts with synchronized behaviors via hierarchical
clustering and was deployed by Facebook.

However, these studies focused onwebOSNs. Malicious accounts
in web OSNs and mobile OSNs may have different characteristics
due to the intrinsic differences in design and functionality between
web and mobile OSNs. Therefore, the features that are effective for
detecting malicious accounts in web OSNs may not be effective for
mobile OSNs. Moreover, these studies did not consider the unique
features of mobile OSNs.

6.2 Social-Structure-based Methods
These methods model an OSN as a graph, where nodes are accounts
and edges represent social relationships (e.g., friendship, following,
interaction) between accounts. They aim to identify the structural
anomaly between benign accounts and malicious accounts in such a
social graph. Specifically, to analyze the structure of the social graph,
they leverage random walks [11, 14, 24, 34, 41, 53, 55, 56], commu-
nity detection [9, 20, 47], or Loopy Belief Propagation (LBP) [29, 30,
49–52].

Among the social-structure-based methods, LBP-based methods
were shown to outperform random walk based and community
detection based methods [29, 49–52]. Specifically, LBP-based meth-
ods model a social graph as pairwise Markov Random Fields and
leverage LBP or its variants to perform inference. Roughly speaking,
each node in the social graph is associated with a binary random
variable. A pairwise Markov Random Field models the joint prob-
ability distribution of all the binary random variables, where the
statistical dependence/correlations are captured by the graph struc-
ture. Given a set of labeled benign accounts and/or labeledmalicious
accounts, LBP-based methods leverage LBP [29, 30] or linearized
LBP [49, 51, 52] to infer the conditional probability distribution for
each binary random variable, which is used to predict a node to be
benign or malicious. Linearized LBP guarantees convergence, while
the standard LBP does not. Moreover, linearized LBP is much more
efficient than the standard LBP. Most LBP-based methods assign
a constant weight to edges in the graph. Wang et al. [50] recently
proposed a method to learn the edge weights.

Social-structure-based methods can be combined with feature-
based methods. Specifically, we can first use a feature-based method
to predict the probability of being malicious for each account. Such
a probability of being malicious can be treated as prior knowl-
edge and incorporated into an LBP-based method. Indeed, Gao et
al. [29] showed that combining feature-based methods and LBP-
based methods can further enhance detection accuracy.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2019

7 CONCLUSION
In this paper, we present the first work on detecting malicious PC-
MSN accounts. We conducted a large-scale measurement study over
a collection of 1 million labeled data fromWLink, a real PC-MSN
with billions of users, and the results show that friend requests are
useful indicators for malicious account detection. We proposed a
set of new features, and analyze their robustness against evasion at-
tacks. We then propose a supervised learning approach to combine
deep neural networks and random forest for final prediction. We
implemented a prototype, Realguard, and our evaluation shows that
Realguard can outperform previous state-of-the-art approaches in
terms of both precision and recall. Also, we show that using only
robust features can achieve the same level of performance as using
all features. We deploy Realguard inWLink’s production pipeline,
and Realguard can processWLink’s daily transactions in 2 hours
while detecting 0.59 million accounts on average each day, which
is 6× of the performance of the previous deployed approaches. A
manual verification shows that Realguard’s precision in predicting
malicious accounts can achieve over 90%. These results show that
Realguard is effective and accuracy at detecting malicious PC-MSN
accounts in WLink.

8 ACKNOWLEDGMENTS
This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61572278, U1736209, and
61872211. Qi Li is the corresponding author of this paper.

REFERENCES
[1] 2018. Jaccard index. https://en.wikipedia.org/wiki/Jaccard_index.
[2] 2018. KakaoTalk. https://www.kakaocorp.com/service/KakaoTalk.
[3] 2018. LINE. https://line.me/en-US/.
[4] 2018. Renren. http://renren.com/.
[5] Fabrıcio Benevenuto, Gabriel Magno, Tiago Rodrigues, and Virgılio Almeida.

2010. Detecting spammers on twitter. In CEAS.
[6] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. 2009. All Your Contacts Are Belong

to Us: Automated Identity Theft Attacks on Social Networks. InWWW.
[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. JSTAT 2008, 10
(2008), P10008.

[8] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32. https:
//doi.org/10.1023/A:1010933404324

[9] Zhuhua Cai and Christopher Jermaine. 2012. The Latent Community Model for
Detecting Sybils in Social Networks. In NDSS.

[10] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Kamesh Munagala. 2015.
Combating friend spam using social rejections. In ICDCS.

[11] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding
the Detection of Fake Accounts in Large Scale Social Online Services. In NSDI.

[12] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. 2014. Uncovering
Large Groups of Active Malicious Accounts in Online Social Networks. In CCS.

[13] Zi Chu, Indra Widjaja, and Haining Wang. 2012. Detecting Social Spam Cam-
paigns on Twitter. In ACNS.

[14] G. Danezis and P. Mittal. 2009. SybilInfer: Detecting Sybil Nodes using Social
Networks. In NDSS.

[15] Manuel Egele, Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna.
2013. Compa: Detecting compromised accounts on social networks.. In NDSS.

[16] Bimal Viswanath et al. 2014. Towards Detecting Anomalous User Behavior in
Online Social Networks.. In USENIX Security Symposium.

[17] Chao Yang et al. 2011. Die Free or Live Hard? Empirical Evaluation and New
Design for Fighting Evolving Twitter Spammers. In RAID.

[18] Gang Wang et al. 2013. Social Turing Tests: Crowdsourcing Sybil Detection. In
NDSS.

[19] Haizhong Zheng et al. 2018. Smoke Screener or Straight Shooter: Detecting Elite
Sybil Attacks in User-Review Social Networks. In NDSS.

[20] Lorenzo Alvisi et al. 2013. SoK: The Evolution of Sybil Defense via Social Net-
works. In IEEE S & P.

[21] Saptarshi Ghosh et al. 2012. Understanding and Combating Link Farming in the
Twitter Social Network. InWWW.

[22] Shirin Nilizadeh et al. 2017. POISED: Spotting Twitter Spam Off the Beaten Paths.
In CCS.

[23] Wang Gang et al. 2013. You Are How You Click: Clickstream Analysis for Sybil
Detection.. In USENIX Security Symposium.

[24] Yazan Boshmaf et al. 2015. Integro: Leveraging Victim Prediction for Robust Fake
Account Detection in OSNs.. In NDSS.

[25] Z. Yang et al. 2016. VoteTrust: Leveraging Friend Invitation Graph to Defend
against Social Network Sybils. IEEE TDSC 13, 4 (2016), 488–501.

[26] Emilio Ferrara, Onur Varol, Clayton A. Davis, Filippo Menczer, and Alessandro
Flammini. 2016. The rise of social bots. Commun. ACM 59 (2016), 96–104.

[27] Hongyu Gao, Yan Chen, Kathy Lee, Diana Palsetia, and Alok Choudhary. 2012.
Towards online spam filtering in social networks. In NDSS.

[28] Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan Chen, and Ben Y Zhao.
2010. Detecting and characterizing social spam campaigns. In IMC.

[29] Peng Gao, Binghui Wang, Neil Zhenqiang Gong, Sanjeev R Kulkarni, Kurt
Thomas, and Prateek Mittal. 2018. Sybilfuse: Combining local attributes with
global structure to perform robust sybil detection. In CNS.

[30] Neil Zhenqiang Gong, Mario Frank, and Prateek Mittal. 2014. SybilBelief: A
Semi-supervised Learning Approach for Structure-based Sybil Detection. IEEE
TIFS 9, 6 (2014).

[31] Chris Grier, Kurt Thomas, Vern Paxson, and Michael Zhang. 2010. @spam: The
Underground on 140 Characters or Less. In CCS.

[32] Hacking Election. 2016. http://goo.gl/G8o9x0
[33] Hacking Financial Market. 2016. http://goo.gl/4AkWyt
[34] Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2017. RandomWalk based

Fake Account Detection in Online Social Networks. In IEEE DSN.
[35] Yoon Kyung Kim. 2014. Convolutional Neural Networks for Sentence Classifica-

tion. In EMNLP.
[36] Kyumin Lee, James Caverlee, and Steve Webb. 2010. Uncovering social spammers:

social honeypots+ machine learning. In SIGIR.
[37] Kyumin Lee, Brian David Eoff, and James Caverlee. 2011. Seven Months with the

Devils: A Long-Term Study of Content Polluters on Twitter.. In ICWSM.
[38] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent Neural Network

for Text Classification with Multi-Task Learning. In IJCAI.
[39] Juan Martinez-Romo and Lourdes Araujo. 2013. Detecting malicious tweets in

trending topics using a statistical analysis of language. Expert Syst. Appl. 40, 8
(2013), 2992–3000.

[40] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. In ICLR Workshop.

[41] Abedelaziz Mohaisen, Nicholas Hopper, and Yongdae Kim. 2011. Keep your
friends close: Incorporating trust into social network-based Sybil defenses. In
INFOCOM.

[42] Jonghyuk Song, Sangho Lee, and Jong Kim. 2011. Spam filtering in Twitter using
sender-receiver relationship. In RAID.

[43] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. 2010. Detecting
spammers on social networks. In ACSAC.

[44] Gianluca Stringhini, Pierre Mourlanne, Gregoire Jacob, Manuel Egele, Christo-
pher Kruegel, and Giovanni Vigna. 2015. Evilcohort: detecting communities of
malicious accounts on online services. In USENIX Security Symposium.

[45] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song. 2011. Design
and evaluation of a real-time url spam filtering service. In IEEE S & P.

[46] Kurt Thomas, Chris Grier, Vern Paxson, and Dawn Song. 2011. Suspended
Accounts in Retrospect: An Analysis of Twitter Spam. In IMC.

[47] Bimal Viswanath, Ansley Post, Krishna P. Gummadi, and Alan Mislove. 2010. An
Analysis of Social Network-Based Sybil Defenses. In SIGCOMM.

[48] Alex Hai Wang. 2010. Don’t Follow Me - Spam Detection in Twitter. In SECRYPT
2010.

[49] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. 2017. GANG: Detecting
Fraudulent Users in Online Social Networks via Guilt-by-Association on Directed
Graphs. In ICDM.

[50] BinghuiWang, Jinyuan Jia, and Neil Zhenqiang Gong. 2019. Graph-based security
and privacy analytics via collective classification with joint weight learning and
propagation. (2019).

[51] Binghui Wang, Jinyuan Jia, Le Zhang, and Neil Zhenqiang Gong. 2018. Structure-
based sybil detection in social networks via local rule-based propagation. IEEE
Transactions on Network Science and Engineering (2018).

[52] Binghui Wang, Le Zhang, and Neil Zhenqiang Gong. 2017. SybilSCAR: Sybil
Detection in Online Social Networks via Local Rule based Propagation. In INFO-
COM.

[53] Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin, and Guofei Gu.
2012. Analyzing Spammer’s Social Networks for Fun and Profit. InWWW.

[54] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y. Zhao, and Yafei Dai.
2011. Uncovering Social Network Sybils in the Wild. In IMC.

[55] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. 2008. SybilLimit: A Near-Optimal
Social Network Defense against Sybil Attacks. In IEEE S & P.

[56] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. 2006. SybilGuard: Defending
Against Sybil Attacks via Social Networks. In SIGCOMM.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2020

https://en.wikipedia.org/wiki/Jaccard_index
https://www.kakaocorp.com/service/KakaoTalk
https://line.me/en-US/
http://renren.com/
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://goo.gl/G8o9x0
http://goo.gl/4AkWyt

A REPRODUCIBILITY MATERIALS
A.1 Full feature set
The features that we use are summarized in Table 2. The design
of these features is motivated by our measurement study. Most of
the features are self-explained. We classify all features to be textual
and non-textual.

The textual features include (1) the number and the fraction of
the request messages include “I am" (the text from the template);
(2) the similarity between request messages; and (3) six numeric
features emitted by a DNN-based module. The first two have been
explained in Section 3.3. We will explain the details of the DNN
model later. We note that most of the features we use have not been
proposed before, and some of them are unique to mobile social
networks. In Section 5, we will evaluate our approach, and show
the importance of these features.
Feature robustness. As we mentioned above, we consider a fea-
ture to be robust, if (1) the attacker cannot manipulate the value of
the feature; (2) the attacker needs to incur significant cost to do so;
or (3) the attacker’s utility will be degraded in doing so. We now
discuss the features that we think are robust, and explain why.

The only robust account-related features are gender and the
number of bound bank cards. Since banks require verifying the real
identity of their customers to open an account and to get a card, it
will incur a significant cost for a malicious account to bind many
bank cards, and will also increase the chance to unveil the real
identity of the attacker. Therefore, we think this feature is robust.

Most of the robust friend requests-related features have been
discussed in Section 3. NIP and NCity are related to the IP addresses
and their cities. Like in traditional online social networks, attackers
need to maintain multiple IP addresses to login to their malicious
accounts, so that they can still get access to their accounts if one
IP address is banned by WLink due to malicious activities. Typi-
cally benign users do not have such a requirement. Therefore, we
consider NIP and NCity as robust features. For a friend request,
whether the sender and the receiver has a common friend is an
indicative factor for two users to know each other in person, and
it is hard for a malicious account to forge. Since WLink does not
allow users to see the friends of his friend, even though an attacker
may be able to become a friend of a benign user (victim), it is not
easy for him to leverage this property to send friend requests to
the victim’s friends. Therefore, we consider the six related features
(SumF, MeanF, MaxF, MinF, StdF, MedianF) as robust.
DNN-based feature extractor. Now we detail the DNN-based
feature extractor. Given a request message m, we want to learn
a function f , so that f (m) ∈ [0, 1] indicates the probability ofm
being a good request message.

Thanks to the effectiveness of deep learning, we can model f
as a deep neural network. Given m is a sequence of characters
with a variable length, we can model f as either a recurrent neural
network (RNN) [38], or a convolutional neural network (CNN) [35].
In evaluation, we observe that the CNN approach deliver better
runtime performance, and thus we choose to use a CNN to model
f . The concrete neural network architecture is provided in Figure 6.
In particular, in the second step, we use the same word2vec model
to convert a message into a matrix as described in Section 3.3. In

the end, the softmax output is a 2-dimensional vector, where its
first dimension’s value is outputted as f (m).

During prediction, once the message m is mapped into f (m),
SumP is computed as the summation of f (m) for all messages.The
other five aggregated metrics are computed similarly.

A.2 Evaluation details
Implementation details. We implement our prototype, namely
Realguard, using both Scala and Python. In particular, we imple-
ment the word vector training using the word2vec implementation
from Spark MLlib2, which uses skip-gram model. The rest is im-
plemented in Python. The neural network component to extract
features from request messages is implemented in Tensorflow3. All
other components for the feature extraction are implemented using
the PySpark4. The tokenizer is implemented using Jieba5. We use
the Random Forest implementation in Spark MLlib for the final
classifier.

For training, the neural network handling natural language is
trained with early stopping, and it stops when the loss gets higher
on the validation set. To achieve higher precision and recall, we
tried different combinations of hyperparameters and chose the final
hyperparameters according to the model’s performance on the
validation set. Then we test our models on the test set.

For testing, Random Forest can produce a prediction score rang-
ing from 0 to 1, and larger scorer indicates a higher likelihood of
an instance being malicious. We can set a threshold to classify each
instance as malicious or benign. In all our evaluation, we set the
threshold to be 0.5. However, we can adjust this threshold to trade
off between precision and recall.
Baselines.We compare our methods with the state-of-the-art solu-
tions, SynchroTrap [12], Evilcohort [44], and Stringhini et al. [43].
The first two are the state-of-the-art community-detection-based
approaches. However, one may wonder whether the adversary on
WLink has not been too sophisticated, so maybe earlier detection
algorithm is still effective. Therefore, we chose Stringhini [43] as
such a representative, which fits theWLink scenario the best. We
perform hyper-parameter tuning of these approaches, choose the
one for each of them to achieve the best performance. We briefly
explain these methods below.
• SyncroTrap/uid builds a graph of accounts as nodes with each
edge associated with a weight to be the similarity between the
two nodes connected computed using Jaccard index [1] according
to uid of the request receiver. Only edges with a weight greater
than a threshold will be preserved, and a community is defined
as a connected sub-graph. Large communities will be considered
malicious. Similarly, SyncroTrap/IP builds a graph of accounts
as nodes and creates the graph similarly according to the IP
addresses associated with the friend requests.

• Evilcohort uses the bipartite graph between accounts and IP ad-
dresses to detect communities using the Louvain modularity [7]
and consider communities as malicious.

2https://spark.apache.org/mllib/
3https://tensorflow.org
4http://spark.apache.org/docs/latest/api/python/
5https://github.com/fxsjy/jieba

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2021

https://spark.apache.org/mllib/
https://tensorflow.org
http://spark.apache.org/docs/latest/api/python/
https://github.com/fxsjy/jieba

Category Feature Name (Acronym) Proposed WLink Robustby us unique

Account
-related

N
on

-te
xt
ua
lf
ea
tu
re
s

Gender (Gender) [24] ✓

Whether default WLink id is used (DefaultId) ✓ ✓

Whether it has frequently logined place (FLPlace) ✓

Whether its posts has been blocked (PBlocked) ✓ ✓

Whether it has real name (RName) ✓ ✓

Whether it used RandomMsg (RandomMsg) ✓ ✓

Whether it used LBS (LBS) ✓ ✓

Whether it used Match (Match) ✓ ✓

Number of bound bank cards (NBBC) ✓ ✓ ✓

Number of groups (NG) ✓

Number of friends (NF) [43]
Number of subscribed official accounts (NSOA) ✓ ✓

Liveness of sending messages (LSM) [27]
Liveness of receiving messages (LRM) ✓

Liveness of receiving group messages (LGM) ✓

Liveness of posting (LP) [37]
Liveness of comments (LC) [26]
Liveness of comments from friends (LCFF) [39]

Friend
requests
-related

Number of friend requests (NFR) [54] ✓

Number of friend requests in sleeping time (NFRS) ✓

Fraction of friend requests in sleeping time (FFRS) ✓

Number of friend requests sent from male (NFRFM) ✓ ✓

Number of friend requests sent from female (NFRFF) ✓ ✓

Number of friend requests sent to male (NFRTM) ✓ ✓

Number of friend requests sent to female (NFRTF) ✓ ✓

Number of unique IP addresses (NIP) ✓ ✓

Number of unique cities based on IP addresses (NCity) ✓ ✓

Number of unique channels (NChannel) ✓ ✓

Sum, mean,max,min,standard deviation and median of attribute whether

✓ ✓
the sender and the receiver have common friends

(SumF, MeanF, MaxF, MinF, StdF, MedianF)

Te
xt
ua
lf
ea
tu
re
s Number of request messages containing "I am" (NFRK) ✓ ✓

Fraction of request messages containing "I am" (FFRK) ✓ ✓

Sum, mean, max, min, std and median of probabilities of request message
✓ ✓ ✓being malicious

(SumP, MeanP, MaxP, MinP, StdP, MedianP)
Similarity of request messages (SimRM) ✓ ✓

Table 2: The features used in our study.

Sender The sender’s ID
Receiver The receiver’s ID
Timestamp The timestamp when the friend request is sent
IP The sender’s IP address
Channel The channel uses to send the friend request
Message The request message along with the request

Table 3: Fields in a friend request.

• Stringhini et al. extracts features including Friend Number
(number of friends),Messages Sent (number of messages sent), FF
ratio (number of friend requests that a user sent to the number
of friends she has), Friend Choice (the total number of names
among the profiles’ friend to the number of distinct first names),
Message Similarity (the similarity among the messages sent by
a user), URL ratio (number of messages containing urls to the

Name Description
1 Group Via group members
2 ID Via WLink ID
3 Number Via phone number
4 NameCard Via name card
5 QRCode Via scanning QR code
6 LBS Via location-based service
7 RandomMsg Via random message service
8 Match Via match service

Table 4: Channels of sending friend requests in WLink.

number of messages). They then use Random Forest as their
classifier.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

2022

	Abstract
	1 Introduction
	2 Privacy-Centric Mobile Social Networks
	3 Characterizing Malicious Accounts
	3.1 Dataset
	3.2 Measuring Friend Requests
	3.3 Request Messages

	4 Machine Learning-Based Malicious Accounts Detection
	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.3 Real World Deployment

	6 Related Work
	6.1 Feature-based Methods
	6.2 Social-Structure-based Methods

	7 Conclusion
	8 Acknowledgments
	References
	A Reproducibility materials
	A.1 Full feature set
	A.2 Evaluation details

